یکی از مسائلی که همیشه ذهن دانشمندان و محققان را به خود مشغول داشته بحث پیشگویی است. اساساً، در طول تاریخ، انسانها همیشه به دنبال این مقوله بودهاند. مسئلۀ ورشکستگی و عدم موفقیت شرکتها نیز همواره از مشکلات درخور توجه بوده و یکی از عواملی است که هریک از استفاده کنندگان از صورتهای مالی همیشه نگران آن هستند.
در سطح کشور و از جمله در جمع شرکتهای تولیدی پذیرفتهشده در بورس اوراق بهادار تهران، شرکتهایی دیده میشوند که در بازپرداخت بدهیهای خود با مشکل مواجه هستند، بازدهی لازم برای پوشش هزینه ها را ندارند و نیز مشمول مادۀ 141 قانون تجارت شدهاند. در واقع، همۀ این مسائل حاکی از درگیری شرکتها با درماندگی مالی هستند. وضع مالی نامطلوب باعث بروز زیان برای اقشار مختلف جامعه و مخصوصاً سرمایهگذاران و اعتباردهندگان میشود. بنابراین، نه تنها سرمایهگذاران بلکه مدیران ارشد و حسابداران نیز علاقهمندند که وضعیت مالی شرکت را به طور علمی پیشبینی نمایند. هرچند ریسک ورشکستگی برای هریک از این گروهها متفاوت است، لیکن همۀ آنها در این مسئله ذینفع هستند.
بحرانهای مالی اخیر در سراسر دنیا باعث توجه به اهمیت مکانیزمهایی شد که برای رفع وضع مالی نامطلوب شرکتها طراحی شدهاند. واضح است که پیشبینی ورشکستگی شرکتها میتواند در بهکارگیری این مکانیزمها برای حل وضع مالی نامطلوب آنها بسیار مؤثر باشد، اما لازم به ذکر است که ویژگیهای خاص کشورها نیز بر مشکلات مالی آنها تأثیر میگذارد.
یکی از راههایی که میتوان به بهرهگیری مناسب از فرصتهای سرمایهگذاری و همچنین جلوگیری از هدر رفتن منابع کمک کند پیش بینی درماندگی مالی یا ورشکستگی است. به این ترتیب که نخست، با ارائۀ هشدارهای لازم، میتوان شرکتها را نسبت به وقوع درماندگی مالی هوشیار کرد تا آنها با توجه به این هشدارها دست به اقدامهای مقتضی بزنند و دوم اینکه سرمایهگذاران فرصت مطلوب سرمایهگذاری را از فرصتهای نامطلوب تشخیص دهند و منابعشان را در فرصتهای مناسب سرمایهگذاری کنند. در ادامۀ این فصل، به تشریح بیشتر موضوع، اهمیت و ضرورت آن و همچنین اهداف و فرضیههای پژوهش میپردازیم.
1-2- بیان مسئله
از نقطهنظر اقتصادی، درماندگی را میتوان به زیانده بودن شرکت تعبیر کرد که در واقع، در این حالت، شرکت دچار عدمموفقیت شده است. صرفنظر از اندازه و ماهیت فعالیت واحدهای تولیدی، استفاده کنندگان از صورتهای مالی، از جمله سرمایهگذاران و یا اعتباردهندگان، بر اساس اطلاعات مالی تصمیم به خرید و فروش سهام و پرداخت وام میگیرند. همانطور که گفته شد، در سطح کشور و از جمله در جمع شرکتهای تولیدی پذیرفتهشده در بورس اوراق بهادار تهران، ممکن است شرکتهایی در آینده دچار ورشکستگی شوند، لیکن باتوجه به عدماطمینان نسبت به وضعیت این شرکتها در آینده، ممکن است منابع و فرصتهای بیشتری از بین میرود.
وضع مالی نامطلوب شرکتها باعث بروز زیان برای اقشار مختلف جامعه میشود، بطور مثال چنانچه حسابرسان از طریق گزارش حسابرسی علائم بحران را افشا نکنند، به وسیلۀ دعاوی حقوقی تحدید میشوند، همچنین موسسات مالی باید احتمال ناتوانی واحدهای تولیدی در بازپرداخت تسهیلات دریافتی را اندازهگیری نمایند. بنابراین، نه تنها سرمایهگذاران بلکه مؤسسات مالی، مدیران ارشد، حسابرسان و … نیز علاقهمندند که وضعیت مالی شرکت را به طور علمی پیشبینی کنند. وقتی شرکتی ورشکسته شود، به نظر میرسد سازماندهی مجدد،
خروج از درماندگی و یا انحلال و نقدکردن آن به منظور استفاده از سایر فرصتهای سرمایهگذاری راه حل معقول باشد. اما زمانی میتوان از سازماندهی مجدد شرکت صحبت کرد که فرصت کافی برای این کار باقی مانده باشد. بنابراین، نیاز به استفاده از الگوهایی است که بتوانند وضعیت مالی شرکتها را در آینده پیشبینی کنند. بنابراین طی سالیان اخیر، علاقه به پیشبینی بحرانهای مالی در شرکتها منتج به شکلگیری مدلهای متفاوتی در این حوزه شده، لیکن مسئله اصلی عدم اجماع در خصوص این مدلها است.
1-3- ضرورت انجام پژوهش
در فضای رقابتی امروز، افراد تلاش زیادی برای اطلاع از وضعیت شرکتها به منظور محافظت از منافع خود انجام میدهند، اما این مهم زمانی دستیافتنی خواهد بود که اشخاص به روشهای تجزیه و تحلیل قابل اعتماد دسترسی داشته باشند. تعیین علت یا علتهای یک بحران مالی کار سادهای نیست. مشکل مالی نتیجۀ عوامل متعددی بوده که به ورشکستگی منجر می شود. پیشبینی درماندگی مالی شرکتها مدتهاست که به عنوان یکی از موضوعات مهم در حوزۀ مالی مطرح بوده و مدلهای متعددی در این زمینه طراحی شده اند و در بسیاری از این مدلها از متغیرهای سنتی مالی به عنوان متغیرهای پیشبینیکنندۀ درماندگی استفاده شده است.
اگر وضعیت مالی بنگاهها از طریق آزمون مدل روشن شود و ورشکستگی آنها قابل پیشبینی باشد، سهامداران و مدیران برای جلوگیری از ورشکستگی و یا تغییر در وضعیت ساختار شرکت چارهاندیشی خواهند کرد و چه بسا با اتخاذ تدابیری درست از ورشکستگی آن شرکتها جلوگیری کنند؛ لیکن انواع مدلهای پیش بینی عملکرد نتایج متفاوتی را به تصمیمگیرنده نشان میدهند. بنابراین، باید مدلهای مختلفی که برای پیش بینی بحرانهای مالی قبل از وقوع آنها تدوین شده آزمایش شوند تا ابتدا مشخص شود که آیا این الگوها در شرایط اقتصادی، فرهنگی و اجتماعی کشور ایران توانایی پیش بینی بحران مالی را دارند یا نه، سپس در صورت توانایی پیشبینی، بر اساس بالاترین توانمندی مرتب شوند تا بتوانند در تصمیمات بهکارگرفته شوند. هرچند هیچیک از روشهای ارزیابی عملکرد در دنیا مدل کاملی را ارئه نمی کنند و همواره، در کنار یک مدل پیشبینی، به قضاوت حرفهای تصمیمگیرنده نیز نیاز هست.
بنابراین، با عنایت به پیامدها و هزینه هایی که مسئلۀ درماندگی مالی میتواند برای شرکتها، اقتصاد کشور و سایر افراد و نهادها ایجاد کند، انجام تحقیقاتی که بتواند این مدلها را ارزیابی نموده و آنها را بر اساس توانمندی در ارزیابی مورد آزمون قراردهد ضرورت مییابد.
1-4- گزارههای پژوهش
1-4-1- سؤالات پژوهش
- میزان توانایی «مدل اسپرینگیت» در مقایسه با «مدل شبکۀ عصبی مصنوعی» در پیش بینی ورشکستگی شرکتها چگونه است؟
- میزان توانایی مدل «اسپرینگیت» در مقایسه با «الگوریتم ژنتیک خطی» در پیش بینی ورشکستگی شرکتها چگونه است؟
- میزان توانایی مدل «شبکۀ عصبی مصنوعی» در مقایسه با «الگوریتم ژنتیک خطی» در پیش بینی ورشکستگی شرکتها چگونه است؟
1-4-2- فرضیهها
هدف این پژوهش مقایسۀ کارایی الگوهای پیش بینی بحران مالی (الگوریتم ژنتیک خطی، مدل شبکۀ عصبی مصنوعی و مدل اسپرینگیت) با بهره گرفتن از نسبتهای مالی در شرکتهای پذیرفتهشده در بازار بورس اوراق بهادار تهران است. بنابراین، فرضیه ها در دو گروه و به شرح زیر طراحی شدهاند:
1-4-2-1- فرضیههای گروه اول:
فرضیۀ اول: مدل «اسپرینگیت» قابلیت پیش بینی بحران در شرکتهای پذیرفتهشده در بازار بورس تهران را دارد.
فرضیۀ دوم: مدل «شبکۀ عصبی مصنوعی» قابلیت پیش بینی بحران در شرکتهای پذیرفتهشده در بازار بورس تهران را دارد.
فرضیۀ سوم: مدل «الگوریتم ژنتیک خطی» قابلیت پیش بینی بحران در شرکتهای پذیرفتهشده در بازار بورس تهران را دارد.
1-4-2-2- فرضیههای گروه دوم:
فرضیۀ اول: بین مدل «اسپرینگیت» و مدل «شبکۀ عصبی مصنوعی» در پیش بینی احتمال وقوع بحران مالی در شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران تفاوت معنیداری وجود دارد.
فرضیۀ دوم: بین مدل «اسپرینگیت» و «الگوریتم ژنتیک خطی» در پیش بینی احتمال وقوع بحران مالی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران تفاوت معنیداری وجود دارد.
فرضیۀ سوم: بین مدل «شبکۀ عصبی مصنوعی» و «الگوریتم ژنتیک خطی» در پیش بینی احتمال وقوع بحران مالی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران تفاوت معنیداری وجود دارد.
- 1. اگر بر اثر زیانهای وارده حداقل نصف سرمایۀ شرکت از میان برود، هیأت مدیره مکلف است بلافاصله مجمع عمومی فوقالعادۀ صاحبان سهام را دعوت نماید تا موضوع انحلال یا بقای شرکت مورد شور و رأی واقع شود. هرگاه مجمع مزبور رأی به شرکت ندهد، باید در همان جلسه و با رعایت مقررات مادۀ 6 این قانون سرمایۀ شرکت را به مبلغ سرمایۀ موجود کاهش دهد. (ناصرزاده، 1374: 59)
. Springate method.
. Artificial neural network.
. Linear genetic algorithm.
فرم در حال بارگذاری ...